Japanese engineers have developed a competing version of maglev trains that use an electrodynamic suspension EDS system, which is based on the repelling force of magnets. The key difference between Japanese and German maglev train technology is that the Japanese trains use super-cooled, superconducting electromagnets. This kind of electromagnet can conduct electricity even after the power supply has been shut off. In the EMS system, which uses standard electromagnets, the coils only conduct electricity when a power supply is present. By chilling the coils at frigid temperatures, Japan's system saves energy.

Author:Yozshukazahn Zolocage
Language:English (Spanish)
Published (Last):7 May 2012
PDF File Size:3.77 Mb
ePub File Size:1.46 Mb
Price:Free* [*Free Regsitration Required]

Inductrack III configurations are suited for use in transporting heavy freight loads. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads.

In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II. Inductrack systems were studied for moving containers at the port of Los Angeles. This study was done with Inductrack 2 which is before Inductrack 3 optimizations for cargo transport.

This arrangement, coupled with sec headway between vehicles in transit and 2-min dwell time for loading and unloading, meets the 5, container trips per day requirement. The system is driverless, using automatic train control. It is also energy-efficient, and uses regenerative braking during deceleration. Inductrack is a completely passive, fail-safe magnetic levitation system, using only unpowered loops of wire in the track and permanent magnets arranged into Halbach arrays on the vehicle to achieve magnetic levitation.

The ladder track is made of unpowered Litz wire cables, and the laminated track is made out of stacked copper or aluminum sheets.

Several maglev railroad proposals are based upon Inductrack technology. The U. General Atomics is developing Inductrak technology in cooperation with multiple research partners. The only power required is to push the train forward against air and electromagnetic drag, with increasing levitation force generated as the velocity of the train increases over the loops of wire.

The new configuration also provides additional advantages over the Inductrack I configuration in that it makes it possible to increase the levitation efficiency Newtons levitated per Watt of drag power by factors of two or three for high-loads, and by even larger factors four or five in typical cases in low-load situations.

Such a situation would occur in transporting loaded containers from a container ship to an inter-modal distribution center, and then returning the unloaded containers to the seaport. In addition to increasing the levitation efficiency for both high- and low-load situations, the Inductrack III configuration permits a major reduction in the gap increase at low load. A large increase in gap is endemic to the Inductrack I configuration when it experiences a large reduction in the load it is carrying, such as would be the case for the container-ship service function described in the previous paragraph.

That is, the necessary windings for a linear synchronous motor LSM drive system could be piggy-backed on either side of the track assembly, where they would couple tightly to the strong transverse field component of the-dual Halbach array that comprises the generator section. Another embodiment of the present invention employs mechanically adjustable bias permanent magnets to levitate a controlled portion of the load, thereby still further reducing the drag power compared to a simple Inductrack I system.

The concept could also be employed to further increase the levitation efficiency of an Inductrack II system, with the adjustability feature being employed to optimize the performance. Lawrence Livermore National Laboratory developed this improved maglev design.

It is more energy efficient and more stable than conventional maglev-based systems. Inductrack, as the design is known, is a passive EDS system that uses Halbach arrays of permanent magnets for both levitation and propulsion.

Energy-intensive cryogenically cooled superconducting coils are eliminated, as are control electronics and hardware necessary to maintain stable levitation. As the vehicle moves over the track, Inductrack magnets induce a current in the track circuitry. This current generates a magnetic field that repels the magnet arrays.

The result is levitation with greater inherent stability. Several additional energy-efficient Inductrack designs have been developed for particular transit system applications. If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Brian Wang. He is known for insightful articles that combine business and technical analysis that catches the attention of the general public and is also useful for those in the industries. He is also involved in angel investing and raising funds for breakthrough technology startup companies.

He has been interviewed for radio, professional organizations. He was recently interviewed by the radio program Steel on Steel on satellites and high altitude balloons that will track all movement in many parts of the USA. He fundraises for various high impact technology companies and has worked in computer technology, insurance, healthcare and with corporate finance. Tags: future , law enforcement , performance enhancement , surveillance , transhuman , world.


Feature Article

Skip to Main Content. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. Use of this web site signifies your agreement to the terms and conditions. Personal Sign In. For IEEE to continue sending you helpful information on our products and services, please consent to our updated Privacy Policy.


Inductrack III for superefficient leviation and movement of shipping containers

Inductrack is a passive , fail-safe electrodynamic magnetic levitation system, using only unpowered loops of wire in the track and permanent magnets arranged into Halbach arrays on the vehicle to achieve magnetic levitation. The track can be in one of two configurations, a "ladder track" and a "laminated track". The ladder track is made of unpowered Litz wire cables, and the laminated track is made out of stacked copper or aluminium sheets. There are three designs: Inductrack I, which is optimized for high speed operation, Inductrack II, which is more efficient at lower speeds, and Inductrack III, which is intended for heavy loads at low speed. Post , for use in maglev trains , based on technology used to levitate flywheels. Above a minimum speed, as the velocity of the train increases, the levitation gap, lift force and power used are largely constant. The system can lift 50 times the magnet weight.

Related Articles